

MasterRoc[®] MG 01

High yield, thixotropic, shrinkage compensated cable bolt grout

Material Submittal

About Master Builders Solutions

The Master Builders Solutions brand brings all of our expertise together to create chemical solutions for new construction, maintenance, repair and renovation of structures. Master Builders Solutions is built on the experience gained from more than a century in the construction industry. The know-how and experience of a global community of construction experts form the core of Master Builders Solutions.

We combine the right elements from our portfolio to solve your specific construction challenges. We collaborate across areas of expertise and regions and draw on the experience gained from countless construction projects worldwide. We leverage global technologies, as well as our in-depth knowledge of local building needs, to develop innovations that help make you more successful and drive sustainable construction.

Our comprehensive portfolio:

- Concrete admixtures
- Cement additives
- Chemical solutions for underground construction
- Waterproofing solutions
- Sealants
- Concrete repair and protection solutions
- Performance grouts
- Wind turbine grouts
- Performance flooring solutions

Table of Contents

About Master Builders Solutions	2
About MasterRoc MG 01	4
Testimonial	5
Technical Data Sheet	6
Certificates and Test Results	

ISO 9001:2015 Certificates	8
Boral Test Results	12
NATA Certificate	33
Particle Distribution Analysis	34
Respirable Crystalline Silica Sample Report	35
WRAG Reports	41
Flow and Bleed Reports	44
Compressive Strength Report	47

MasterRoc MG 01

High yield, thixotropic cable bolt grout which is shrinkage compensated and best used in civil tunnels and underground mines

How does MasterRoc MG 01 work?

MasterRoc MG 01 is a high yield, shrinkage compensated and thixotropic grout for placement of cable and rock bolts in civil tunnels and underground mines.

Recommended uses:

MasterRoc MG 01 is particularly suitable as a grout used for the encapsulation of roof bolts and cable anchors where the "top-down" grouting method is preferred.

MasterRoc MG 01 has been specially developed to give a high yield (volume) of grout without segregation or bleed whilst providing excellent compressive strengths

What are the unique features of MasterRoc MG 01?

MasterRoc MG 01 is extremely pumpable but shows rapid thixotropy to restrict flow into surrounding strata.

What are the benefits of MasterRoc MG 01?

- Economical to use, due to high yield and rapid thixotropy
- Small grout tube diameters mean smaller diameter drill holes can be used
- · Eliminates the requirement for sealing of the collar and plate with cotton waste etc
- Good ultimate strength to ensure the permanence and safety of critical installations
- Extended working time (over 30 minutes at 20°C) enabling easier cleanup of pumps and hoses
- · Shrinkage compensated for greater bond strength to surrounding strata
- High bond to steel

Testimonial

MasterRoc MG 0

High Yield, Thixotropic Cable Bolt Grout Underground Mine, Northern NSW

"At a recent longwall face road, we were met with difficult ground conditions and a sub-par grout for cable bolt anchoring. This combination of factors resulted in only 67% of cable bolts being installed successfully.

After many failed attempts, we began trialling MasterRoc MG 01 which offered large improvements in mixing, pumping and placement.

Once we began using the MG 01 along the face road, more than 88% of the cable bolts were successfully installed on the first attempt, resulting in a faster and safer longwall bolt up."

Joshua Hurt Mining Engineer, Underground Mine, Northern NSW

MATERIAL DESCRIPTION

MasterRoc MG 01 is a high yield, shrinkage compensated and thixotropic grout for placement of cable and rock bolts in civil tunnels and underground mines.

PERFORMANCE CHARACTERISTICS

Grout strength development is dependent on the amount of mixing water, ambient temperature, age and curing. Typical rates of compressive strength development for 20kg of MasterRoc MG 01 grout with 6.5L of water under controlled laboratory conditions are shown below:

Compressive Strength – Typical results (AS1478.2 Restrained 50mm cubes at 23°C)

1 Day	30MPa
7 Days	65MPa
28 Days	80MPa

CHARACTERISTICS AND BENEFITS

- Extremely pumpable but shows rapid thixotropy to restrict flow into surrounding strata
- Economical to use, due to high yield and rapid thixotropy
- Small grout tube diameters mean smaller diameter drill holes can be used
- Eliminates the requirement for sealing of the collar and plate with cotton waste etc
- Good ultimate strength to ensure the permanence and safety of critical installations
- Extended working time (over 30 minutes at 20°C) enabling easier cleanup of pumps and hoses
- Shrinkage compensated for greater bond strength to surrounding strata
- High bond to steel

MasterRoc[®] MG 01

High yield thixotropic cable bolt grout

MATERIAL DESCRIPTION

MasterRoc MG 01 is a high yield, shrinkage compensated and thixotropic grout for placement of cable and rock bolts in civil tunnels and underground mines.

AREAS OF APPLICATION

MasterRoc MG 01 is particularly suitable as a grout used for the encapsulation of roof bolts and cable anchors where the "top-down" grouting method is preferred.

MasterRoc MG 01 has been specially developed to give a high yield (volume) of grout without segregation or bleed whilst providing excellent compressive strengths.

CHARACTERISTICS AND BENEFITS

- Extremely pumpable but shows rapid thixotropy to restrict flow into surrounding strata
- Economical to use, due to high yield and rapid thixotropy
- Small grout tube diameters mean smaller diameter drill holes can be used
- Eliminates the requirement for sealing of the collar and plate with cotton waste etc
- Good ultimate strength to ensure the permanence and safety of critical installations
- Extended working time (over 30 minutes at 20°C) enabling easier cleanup of pumps and hoses
- Shrinkage compensated for greater bond strength to surrounding strata
- High bond to steel

PERFORMANCE CHARACTERISTICS

Grout strength development is dependent on the amount of mixing water, ambient temperature, age and curing. Typical rates of compressive strength development for 20kg of **MasterRoc MG 01** grout with 6.5l of water under controlled laboratory conditions are shown below:

Compressive Strength – Typical results (AS1478.2 Appendix A. restrained 50mm cubes at 23°C)

1 Day	7 Days	28 Days
30MPa	65MPa	80MPa

MIXING EQUIPMENT

For best results mix using a high mechanical shear or paddle mixer. Any grout pump must have accurate water dosage facilities.

MIXING

MasterRoc MG 01 is supplied ready to use, requiring only the addition of potable water. Do not use hardened or lumpy grout caused by torn or water damaged bags.

Fill mixer with correct volume of water to match number of bags of **MasterRoc MG 01**. A good mixer should have an accurate method of determining the water content.

Start the mixer and slowly add **MasterRoc MG 01** powder. Continue mixing the grout until a thick creamy, no-lump consistency is obtained.

Actual amount of water will depend on the desired consistency of the grout required and the grout pump available. As a guide, use 6.5-7.5 litres per 20kg bag.

Do not use excess water (above 7.5 litres for thixotropic mixes). Discard any grout that has been left in excess of 60 minutes. Do not retemper.

PLACEMENT

Master Builders Solutions provide a range of support services which includes operator training and underground audits. Each service package is developed to suit individual site requirements.

It is strongly recommended that a review with fully trained and qualified Master Builders Solutions personnel is conducted prior to placement of **MasterRoc MG 01**.

CLEANING

As with all grouting operations, systematic cleaning of the pump and grout lines with clean water is essential. This should be done immediately after completion of grouting operations. If delays occur for greater than 1 hour, the batched grout should be discarded and the pump and grout lines cleaned.

ESTIMATING DATA

20kg of **MasterRoc MG 01** grout with 7.5 litres of water will yield approximately 14.5 litres (0.0145m³).

PACKAGING

MasterRoc MG 01 is packaged in 20kg moisture resistant paper bags and supplied 64 bags (1.28t) to a pallet.

SHELF LIFE

Pallets should be stored in a dry place. **MasterRoc MG 01** has a shelf life of 12 months.

MasterRoc[®] MG 01

High yield thixotropic cable bolt grout

PRECAUTIONS

For the full health and safety hazard information and how to safely handle and use this product, make sure that you obtain a copy of the Safety Data Sheet (SDS) from our office or website.

DISCLAIMER

MasterRoc-MG01 -ANZ-V10-0221

STATEMENT OF RESPONSIBILITY				
NOTE	NOTE Field service where provided does not constitute supervisory responsibility. Suggestions made by MB Solutions Australia Pty Ltd either orally or in writing may be followed, modified or rejected by the owner, engineer or contractor since they, and not MB Solutions Australia Pty Ltd, are responsible for carrying out procedures appropriate to a			
MB Solutions Australia Pty Ltd ABN 69 634 934 419 11 Stanton Road Seven Hills NSW 2147 Freecall: 1300 227 300 www.master-builders-solutions.com/en-au		MB Solutions New Zealand Ltd 45C William Pickering Drive Albany, Auckland New Zealand Freecall: 0800 334 877	Emergency Advice: 1300 954 583 within Australia (24hr) 0800 001 607 within New Zealand	

The Certification Body of TÜV SÜD Management Service GmbH certifies that

MB Solutions Australia Pty. Ltd. 11 Stanton Road Seven Hills, NSW 2147 Australia

has established and applies a Quality Management System for

The Manufacture, storage, sale and distribution of construction chemical products, solutions and services to the construction industry.

An audit was performed, Order No. 770000040.

Proof has been furnished that the requirements according to

ISO 9001:2015

are fulfilled.

The certificate is valid in conjunction with the main certificate from **2021-09-15** until **2024-09-13**. Certificate Registration No.: **12 100 60146/050 TMS**.

Prd D

Head of Certification Body Munich, 2021-09-16

ZERTIFIKAT

The Certification Body of TÜV SÜD Management Service GmbH certifies that

MB Solutions Australia Pty. Ltd. 80 Fairbank Road Melbourne, VIC 3169 Australia

> has established and applies a Quality Management System for

The Manufacture, storage, sale and distribution of construction chemical products, solutions and services to the construction industry.

An audit was performed, Order No. 770000040.

Proof has been furnished that the requirements according to

ISO 9001:2015

are fulfilled.

The certificate is valid in conjunction with the main certificate from 2021-09-15 until 2024-09-13.

Certificate Registration No.: 12 100 60146/048 TMS.

Prd D

Head of Certification Body Munich, 2021-09-16

ZERTIFIKAT

The Certification Body of TÜV SÜD Management Service GmbH

certifies that

MB Solutions Australia Pty. Ltd. 731 Curtin Avenue East Brisbane, QLD 4009

Australia

has established and applies a Quality Management System for

The Manufacture, storage, sale and distribution of construction chemical products, solutions and services to the construction industry.

An audit was performed, Order No. 770000040.

Proof has been furnished that the requirements according to

ISO 9001:2015

are fulfilled.

The certificate is valid in conjunction with the main certificate from **2021-09-15** until **2024-09-13**.

Certificate Registration No.: 12 100 60146/047 TMS.

Prd D

Head of Certification Body Munich, 2021-09-16

ZERTIFIKAT

VIS/01-01/2019

The Certification Body of TÜV SÜD Management Service GmbH certifies that

MB Solutions Australia Pty. Ltd. 43-55 Produce Lane Adelaide, SA 5095 Australia

has established and applies a Quality Management System for

The Manufacture, storage, sale and distribution of construction chemical products, solutions and services to the construction industry.

An audit was performed, Order No. 770000040.

Proof has been furnished that the requirements according to

ISO 9001:2015

are fulfilled.

The certificate is valid in conjunction with the main certificate from **2021-09-15** until **2024-09-13**.

Certificate Registration No.: 12 100 60146/049 TMS.

Prd D

Head of Certification Body Munich, 2021-09-16

CERTIFICATE

ZERTIFIKAT

TEST REPORT

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

FILE NO: 912/22

REQUEST NO: 100398

LAB SAMPLE NO: 269541

TEST METHODS: ASTM C939: Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method) ASTM C940: Expansion and Bleeding of Freshly Mixed Grouts

SAMPLE IDENTIFICATION: MasterRoc MG 01

DATE RECEIVED: 06/07/2022

MIX RATIO: Water / Powder: 0.400

PROPERTY	TEST METHOD	RESULT	DATE TESTED
Bleeding - 90 minutes	ASTM C940	<0.2%	12/07/2022
 3 hours Expansion 90 minutes 3 hours 	ASTM C940	<0.2% <0.2% <0.2%	12/07/2022
Fluidity (after mixing), 1 L volume of grout Fluidity (45 minutes after mixing), 1 L volume of grout	ASTM C939 ASTM C939	9 seconds 12 seconds	09/07/2022 09/07/2022

Notes:

• Fluidity was based on RMS B113.2 requirement.

• Sample was provided by the client and tested as received.

• Test results in this Test Report relate only to the samples tested.

Mark Lorkovic, Yasha Reis, Mat. File, File

Julius Alvaro 27/07/2022

Bo

TEST REPORT

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

FILE NO: 912/22

REQUEST NO: 100398

LAB SAMPLE NO: 269541

TEST METHODS: ASTM C939: Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method) ASTM C940: Expansion and Bleeding of Freshly Mixed Grouts

SAMPLE IDENTIFICATION: MasterRoc MG 01

DATE RECEIVED: 06/07/2022

MIX RATIO: Water / Powder: 0.425

TEST METHOD	RESULT	DATE TESTED
ASTM C940	<0.2%	12/07/2022
ASTM C940	<0.2% 0.4%	12/07/2022
ASTM C939 ASTM C939	0.4% 9 seconds 10 seconds	09/07/2022 09/07/2022
	ASTM C940 ASTM C940 ASTM C939	METHOD ASTM C940 <0.2%

Notes:

• Fluidity was based on RMS B113.2 requirement.

• Sample was provided by the client and tested as received.

• Test results in this Test Report relate only to the samples tested.

Mark Lorkovic, Yasha Reis, Mat. File, File

Julius C. Olivera Julius Alvaro 27/07/2022

TEST REPORT

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

FILE NO: 912/22

REQUEST NO: 100398

LAB SAMPLE NO: 269541

TEST METHODS: ASTM C939: Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method) ASTM C940: Expansion and Bleeding of Freshly Mixed Grouts

SAMPLE IDENTIFICATION: MasterRoc MG 01

DATE RECEIVED: 06/07/2022

MIX RATIO: Water / Powder: 0.450

PROPERTY	TEST METHOD	RESULT	DATE TESTED
Bleeding - 90 minutes - 3 hours	ASTM C940	0.2%	12/07/2022
Expansion - 90 minutes - 3 hours	ASTM C940	0.2% 1.0% 1.0%	12/07/2022
Fluidity (after mixing), 1 L volume of grout Fluidity (45 minutes after mixing), 1 L volume of grout	ASTM C939 ASTM C939	7 seconds 8 seconds	09/07/2022 09/07/2022

Notes:

• Fluidity was based on RMS B113.2 requirement.

Sample was provided by the client and tested as received.

• Test results in this Test Report relate only to the samples tested.

lin C. Awan ulius Alvaro 28/07/2022

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

FILE NO: 912/22

DATE RECEIVED: 06/07/2022

REQUEST NO: 100398

TEST REPORT

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1478.2 - Appendix A: Test for Compressive Strength

269541

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE: Master Builders

LAB. SAMPLE NO:

Results

Date of cast: 12/07/2022

Water/Powder Ratio: 0.400

Age	Compressive Strength (MPa)	Date Tested
12 Hours	4.6	12/07/2022
1 Day	25.5	13/07/2022
3 Days	39.9	15/07/2022
7 Days	51.6	19/07/2022
28 Days	TBD	09/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

leus C. Aluan Julius Alvaro 27/07/2022

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

FILE NO: 912/22

DATE RECEIVED: 06/07/2022

REQUEST NO: 100398

TEST REPORT

- CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD
- ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1478.2 - Appendix A: Test for Compressive Strength

269541

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE: Master Builders

LAB. SAMPLE NO:

<u>Results</u>

Date of cast: 12/07/2022

Water/Powder Ratio: 0.425

Age	Compressive Strength (MPa)	Date Tested
12 Hours	4.4	12/07/2022
1 Day	20.8	13/07/2022
3 Days	36.9	15/07/2022
7 Days	50.4	19/07/2022
28 Days	TBD	09/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

2. Augu 111US Alvaro 27/07/2022

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

FILE NO: 912/22

DATE RECEIVED: 06/07/2022

REQUEST NO: 100398

TEST REPORT

- CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD
- ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1478.2 - Appendix A: Test for Compressive Strength

269541

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE: Master Builders

LAB. SAMPLE NO:

<u>Results</u>

Date of cast: 11/07/2022

Water/Powder Ratio: 0.450

Age	Compressive Strength (MPa)	Date Tested
12 Hours	3.8	11/07/2022
1 Day	18.0	12/07/2022
3 Days	33.0	14/07/2022
7 Days	40.0	18/07/2022
28 Days	TBD	08/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

lin C. Quan Julius Alvaro 27/07/2022

Page 1 of 1 Report Template - Rev. (3) Jul 2021 Authorised by M. A.

Boral Construction Materials Materials Technical Services

Unit 4, 3–5 Gibbon Road Baulkham Hills NSW 2153 Australia

PO Box 400, Winston Hills NSW 2153

T +61 (02) 9624 9900

TEST REPORT

boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

LAB. SAMPLE NO: 269541

SOURCE OF SAMPLE: Master Builders

SAMPLE IDENTIFICATION: MasterRoc MG 01

DATE RECEIVED: 06/07/2022

FILE NO: 912/22

REQUEST NO: 100398

PROPERTY	DATE TESTED	RESULT	TEST METHOD
Relative Density	14/07/2022	2.91	AS 3583.5

Note:

• Sample was provided by the client and tested as received.

Mark Lorkovic, Yasha Reis, Mat. File, File

Approved Signatory Julius C. Allace Date 27/07/2022 Serial No. CEM100398.JA.1

NATA Accredited Laboratory Number: 547

Accredited for compliance with ISO/IEC 17025 – Testing This report shall not be reproduced in full without the approval of the Boral MTS Laboratory. Test results in this Test Report relate only to the samples tested.

TEST REPORT

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

FILE NO: 912/22

REQUEST NO: 100398

LAB SAMPLE NO: 269541

TEST METHODS: ASTM C939: Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method) ASTM C940: Expansion and Bleeding of Freshly Mixed Grouts

SAMPLE IDENTIFICATION: MasterRoc MG 01

DATE RECEIVED: 06/07/2022

MIX RATIO: Water / Powder: 0.400

- 90 minutes <0.2% - 3 hours <0.2% Expansion ASTM C940 12/07/2022 - 90 minutes <0.2% - 3 hours <0.2%	PROPERTY	TEST METHOD	RESULT	DATE TESTED
- 3 hours <0.2%	•	ASTM C940	<0.2%	12/07/2022
ExpansionASTM C94012/07/2022- 90 minutes<0.2%			n	
- 3 hours <0.2%	Expansion	ASTM C940	0.270	12/07/2022
Fluidity (after mixing) ASTM C939 09/07/2022 - 1 L volume of grout 9 seconds - 1.725 L volume of grout 23 seconds Fluidity (45 minutes after mixing) ASTM C939 09/07/2022 - 1 L volume of grout 12 seconds 09/07/2022			<0.2%	
- 1 L volume of grout 9 seconds - 1.725 L volume of grout 23 seconds Fluidity (45 minutes after mixing) ASTM C939 09/07/2022 - 1 L volume of grout 12 seconds			<0.2%	
-1.725 L volume of grout23 secondsFluidity (45 minutes after mixing)ASTM C93909/07/2022-1 L volume of grout12 seconds		ASTM C939		09/07/2022
Fluidity (45 minutes after mixing) ASTM C939 09/07/2022 - 1 L volume of grout 12 seconds				
- 1 L volume of grout 12 seconds	Ũ		23 seconds	
		ASTM C939		09/07/2022
- 1.725 L volume of grout 26 seconds				
	- 1.725 L volume of grout		26 seconds	

Notes:

- Fluidity was based on RMS B113.2 requirement.
- Sample was provided by the client and tested as received.
- Test results in this Test Report relate only to the samples tested.

Aleur C. Auau 27107/2022

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

FILE NO: 912/22

DATE RECEIVED: 06/07/2022

REQUEST NO: 100398

TEST REPORT

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1478.2 - Appendix A: Test for Compressive Strength

269541

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE: Master Builders

LAB. SAMPLE NO:

Results

Date of cast: 12/07/2022

Water/Powder Ratio: 0.400

Age	Compressive Strength (MPa)	Date Tested
12 Hours	4.6	12/07/2022
1 Day	25.5	13/07/2022
3 Days	39.9	15/07/2022
7 Days	51.6	19/07/2022
28 Days	TBD	09/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

Deur C. Auan Julius Alvaro 27/07/2022

TEST REPORT

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

FILE NO: 912/22

REQUEST NO: 100398

LAB SAMPLE NO: 269541

DATE RECEIVED: 06/07/2022

TEST METHODS: ASTM C939: Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method) ASTM C940: Expansion and Bleeding of Freshly Mixed Grouts

SAMPLE IDENTIFICATION: MasterRoc MG 01

MIX RATIO: Water / Powder: 0.425

PROPERTY	TEST METHOD	RESULT	DATE TESTED
Bleeding - 90 minutes	ASTM C940	<0.2%	12/07/2022
- 3 hours Expansion - 90 minutes	ASTM C940	<0.2% 0.4%	12/07/2022
 3 hours Fluidity (after mixing) 1 L volume of grout 	ASTM C939	0.4% 9 seconds	09/07/2022
 1.725 L volume of grout Fluidity (45 minutes after mixing) 1 L volume of grout 1.725 L volume of grout 	ASTM C939	16 seconds 10 seconds 19 seconds	09/07/2022

Notes:

- Fluidity was based on RMS B113.2 requirement.
- Sample was provided by the client and tested as received.
- Test results in this Test Report relate only to the samples tested.

Mark Lorkovic, Yasha Reis, Mat. File, File

lun C-Alvan 27107/2022

21

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

FILE NO: 912/22

DATE RECEIVED: 06/07/2022

REQUEST NO: 100398

TEST REPORT

- CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD
- ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1478.2 - Appendix A: Test for Compressive Strength

269541

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE: Master Builders

LAB. SAMPLE NO:

Results

Date of cast: 12/07/2022

Water/Powder Ratio: 0.425

Age	Compressive Strength (MPa)	Date Tested
12 Hours	4.4	12/07/2022
1 Day	20.8	13/07/2022
3 Days	36.9	15/07/2022
7 Days	50.4	19/07/2022
28 Days	TBD	09/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

2-away 27/07/2022

TEST REPORT

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

FILE NO: 912/22

REQUEST NO: 100398

LAB SAMPLE NO: 269541

DATE RECEIVED: 06/07/2022

TEST METHODS: ASTM C939: Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method) ASTM C940: Expansion and Bleeding of Freshly Mixed Grouts

SAMPLE IDENTIFICATION: MasterRoc MG 01

MIX RATIO: Water / Powder: 0.450

PROPERTY	TEST METHOD	RESULT	DATE TESTED
Bleeding	ASTM C940	0.00/	11/07/2022
- 90 minutes - 3 hours		0.2% 0.2%	
Expansion	ASTM C940		11/07/2022
90 minutes3 hours		1.0%	
Fluidity (after mixing)	ASTM C939	1.0%	09/07/2022
- 1 L volume of grout		7 seconds	00/01/2022
- 1.725 L volume of grout		13 seconds	
Fluidity (45 minutes after mixing)	ASTM C939		09/07/2022
 1 L volume of grout 1.725 L volume of grout 		8 seconds 14 seconds	

Notes:

- Fluidity was based on RMS B113.2 requirement.
- Sample was provided by the client and tested as received.
- Test results in this Test Report relate only to the samples tested.

Mark Lorkovic, Yasha Reis, Mat. File, File

Augu us ulius Alvaro 27/07/2022

23

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

FILE NO: 912/22

DATE RECEIVED: 06/07/2022

REQUEST NO: 100398

TEST REPORT

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1478.2 - Appendix A: Test for Compressive Strength

269541

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE: Master Builders

LAB. SAMPLE NO:

<u>Results</u>

Date of cast: 11/07/2022

Water/Powder Ratio: 0.450

Age	Compressive Strength (MPa)	Date Tested
12 Hours	3.8	11/07/2022
1 Day	18.0	12/07/2022
3 Days	33.0	14/07/2022
7 Days	40.0	18/07/2022
28 Days	TBD	08/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

in C. Auan Julius Alvaro 27/07/2022

Page 1 of 1 Report Template - Rev. (3) Jul 2021 Authorised by M. A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia

PO Box 400, Winston Hills NSW 2153

T +61 (02) 9624 9900

TEST REPORT

boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

LAB. SAMPLE NO: 269541

SOURCE OF SAMPLE: Master Builders

SAMPLE IDENTIFICATION: MasterRoc MG 01

DATE RECEIVED: 06/07/2022

FILE NO: 912/22

REQUEST NO: 100398

PROPERTY	DATE TESTED	RESULT	TEST METHOD
Relative Density	14/07/2022	2.91	AS 3583.5

Note:

• Sample was provided by the client and tested as received.

Mark Lorkovic, Yasha Reis, Mat. File, File

Julius Alvaro Aslin C. Ula Approved Signator 27/07/2022 Serial No. <u>CEM100398.J</u>A.1 Date

Accredited for compliance with ISO/IEC 17025 – Testing This report shall not be reproduced in full without the approval of the Boral MTS Laboratory. Test results in this Test Report relate only to the samples tested.

Page 1 of 1 Report Template - Rev. (4) Jul 2021 Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia

PO Box 400, Winston Hills NSW 2153

T +61 (02) 9624 9900

TEST REPORT

CLIENT:	MASTER BUILDERS SOLUTIONS PTY LTD	FILE NO:	912/22
ADDRESS:	11 Stanton Road, Seven Hills, NSW 2147	REQUEST NO:	97846

TEST METHOD: AS 2350.13 - Determination of Drying Shrinkage of Cement Mortars

SAMPLE IDENTIFICATION:	MasterRoc MG01	DATE SAMPLED:	28/01/2022
SAMPLE SOURCE:	Seven Hills	DATE RECEIVED:	28/01/2022
LAB. SAMPLE NO:	262705	DATE OF CAST:	01/02/2022

Initial Measurement:

02/02/2022

Results

Age	Date Measured	Drying Shrinkage (Microstrain)			Average
		Left Prism	Middle Prism	Right Prism	
7 days	08/02/2022	477	492	500	490
14 days	15/02/2022	577	562	577	570
21 days	22/02/2022	608	608	615	610
28 days	01/03/2022	646	623	638	640

Notes:

- Sample was provided by the client and tested as received.
- Water/Grout ratio as recommended by client: 6.5Kg/20Kg.
- Test samples were mixed with 1350 g of Normensand.
- The mould used for determining the drying shrinkage contains three prisms of 40mm width and 40mm depth incorporating a gauge length 130mm.
- The average reported to the nearest 10 microstrain.
- No determination has been discarded in accordance with Clause 11 of AS2350.13.

Mark Lorkovic, Mat. File, File

140 Julius Alvaro Approved Signator CEM97846.JA.1 0 Date 0 Serial No

Accredited for compliance with ISO/IEC 17025 – Testing This report shall not be reproduced in full without the approval of the Boral MTS Laboratory. Test results in this Test Report relate only to the samples tested.

NATA Accredited Laboratory Number: 547

Build something great™

Page 1 of 1 Report Template - Rev. (3) Jul 2021 Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

REQUEST NO: 97846

TEST REPORT

CLIENT:	MASTER BUILDERS SOLUTIONS PTY LTD	FILE NO:	912/22
		FILE NU:	912/22

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1478.2 App B - Test for Dimensional Change of Concrete, Mortar or Grout

SAMPLE IDENTIFICATION:	MasterRoc MG01	DATE RECEIVED:	28/01/2022
SAMPLE SOURCE:	Seven Hills		
LAB. SAMPLE NO:	262705	DATE OF CAST:	01/02/2022

Initial Measurement: 02/02/2022

Mix Ratio: 6.5 kg Water per 20 Kg Bag

Results

Age	Date measured	Drying Shrinkage (Microstrain)		Average	
		Left	Middle	Right	
7 Days	08/02/2022	584	596	596	590
14 Days	15/02/2022	648	660	652	650
21 Days	22/02/2022	688	704	704	700
28 Days	01/03/2022	708	724	708	710

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the drying shrinkage contains three bars of 25mm width and 25mm depth incorporating a gauge length 250mm.
- The average reported to the nearest 10 microstrain.
- Test samples were mixed with 1350 g of Normensand.
- Test results in this Test Report relate only to the samples tested.

Mark Lorkovic, Mat. File, File

la Julius Alvaro

10/03/2022

Page 1 of 1 Report Template – Rev. (3) July 2021 – Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3–5 Gibbon Road Baulkham Hills NSW 2153 Australia

PO Box 400, Winston Hills NSW 2153

T +61 (02) 9624 9900

boral.com.au

CLIENT: MASTER BUILDERS SOLUTIONS PTY LTD

PROJECT: Testing of Grout Sample SLC Snowy Hydro for chloride content.

REQUEST No.: 97846

FILE No.: 912 / 22

TEST PROCEDURE:

AS 1012.20.1 – Determination of Chloride and Sulfate in Hardened Concrete and Aggregates – Nitric Acid Extraction Method

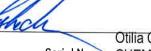
TEST REPORT

Laboratory Sample No.: Date Sampled: Date Received: Date Tested: Sample Description: 262705 28.01.22 28.01.22 01.02.22 MasterRoc MG01 Location: Seven Hills 1

Field No .:

TEST RESULTS:

Chloride as Cl⁻ (%)


0.014

Sample was provided by the Client.

Mark Lorkovic, Mat. File, File.

Approved Signatory

Date 01.02.2022

Otilia Costache Serial No. <u>CHEM97846.OC.1</u>

NATA Accredited Laboratory Number: 547

Accredited for compliance with ISO/IEC 17025 ~ Testing This report shall not be reproduced in full without the approval of the Boral MTS Laboratory. Test results in this Test Report relate only to the samples tested.

Page 1 of 1 Report Template - Rev. (4) Jul 2021 Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia

PO Box 400, Winston Hills NSW 2153

T +61 (02) 9624 9900

TEST REPORT

CLIENT:	MASTER BUILDERS SOLUTIONS PTY LTD	FILE NO:	912/22
ADDRESS:	11 Stanton Road, Seven Hills, NSW 2147	REQUEST NO:	97846

TEST METHOD: AS 2350.13 - Determination of Drying Shrinkage of Cement Mortars

SAMPLE IDENTIFICATION:	MasterRoc MG01	DATE SAMPLED:	28/01/2022
SAMPLE SOURCE:	Seven Hills	DATE RECEIVED:	28/01/2022
LAB. SAMPLE NO:	262705	DATE OF CAST:	01/02/2022

Initial Measurement:

02/02/2022

Results

Age	Date Measured			Average	
	Left Prism	Middle Prism	Right Prism		
7 days	08/02/2022	477	492	500	490
14 days	15/02/2022	577	562	577	570
21 days	22/02/2022	608	608	615	610
28 days	01/03/2022	646	623	638	640

Notes:

- Sample was provided by the client and tested as received.
- Water/Grout ratio as recommended by client: 6.5Kg/20Kg.
- Test samples were mixed with 1350 g of Normensand.
- The mould used for determining the drying shrinkage contains three prisms of 40mm width and 40mm depth incorporating a gauge length 130mm.
- The average reported to the nearest 10 microstrain.
- No determination has been discarded in accordance with Clause 11 of AS2350.13.

Mark Lorkovic, Mat. File, File

140 Julius Alvaro Approved Signator CEM97846.JA.1 0 Date 0 Serial No

Accredited for compliance with ISO/IEC 17025 – Testing This report shall not be reproduced in full without the approval of the Boral MTS Laboratory. Test results in this Test Report relate only to the samples tested.

NATA Accredited Laboratory Number: 547

Boral Construction Materials Materials Technical Services

Unit 4, 3–5 Gibbon Road Baulkham Hills NSW 2153 Australia

PO Box 400, Winston Hills NSW 2153

FILE NO: 912/22

DATE RECEIVED: 12/07/2022

REQUEST NO: 100398

T +61 (02) 9624 9900

TEST REPORT

boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1012.9 - Method for determining compressive strength of concrete, mortar and grout

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE: Master Builders

LAB. SAMPLE NO: 269541

<u>Results</u>

Date of cast: 12/07/2022

Water/Powder Ratio: 0.400

Age	Compressive Strength (MPa)	Date Tested
12 Hours	4.6	12/07/2022
1 Day	25.5	13/07/2022
3 Days	39.9	15/07/2022
7 Days	51.6	19/07/2022
28 Days	71.6	09/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

Mark Lorkovic, Yasha Reis, Mat. File, File

RACL-		Robert Camilleri		\checkmark
Approved Signatory Date Date	Serial No	CON1008398.RC.1	Hac-MRA	
			contract -	

Accredited for compliance with ISO/IEC 17025 – Testing

This report shall not be reproduced in full without the approval of the Boral MTS Laboratory. Test results in this Test Report relate only to the samples tested.

Boral Construction Materials Materials Technical Services

Unit 4, 3–5 Gibbon Road Baulkham Hills NSW 2153 Australia

PO Box 400, Winston Hills NSW 2153

FILE NO: 912/22

DATE RECEIVED: 12/07/2022

REQUEST NO: 100398

T +61 (02) 9624 9900

TEST REPORT

boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1012.9 - Method for determining compressive strength of concrete, mortar and grout

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE: Master Builders

LAB. SAMPLE NO: 269541

<u>Results</u>

Date of cast: 12/07/2022

Water/Powder Ratio: 0.425

Age	Compressive Strength (MPa)	Date Tested
12 Hours	4.4	12/07/2022
1 Day	20.8	13/07/2022
3 Days	36.9	15/07/2022
7 Days	50.4	19/07/2022
28 Days	70.1	09/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

Mark Lorkovic, Yasha Reis, Mat. File, File

	Rfcli	Robert Camilleri		
Approved Signatory Date12.08.2022	Serial No	CON1008398.RC.2	Hard MRA	NATA

Accredited for compliance with ISO/IEC 17025 – Testing This report shall not be reproduced in full without the approval of the Boral MTS Laboratory.

Test results in this Test Report relate only to the samples tested.

Page 1 of 1 Report Template - Rev. (3) Jul 2021 Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3–5 Gibbon Road Baulkham Hills NSW 2153 Australia

PO Box 400, Winston Hills NSW 2153

912/22

T +61 (02) 9624 9900

TEST REPORT

boral.com.au

CLIENT: MB SOLUTIONS AUSTRALIA PTY LTD

ADDRESS: 11 Stanton Road, Seven Hills, NSW 2147

TEST METHOD: AS 1012.9 - Method for determining compressive strength of concrete, mortar and grout

SAMPLE IDENTIFICATION: MasterRoc MG 01

SAMPLE SOURCE:Master BuildersLAB. SAMPLE NO:269541

DATE RECEIVED: 12/07/2022

FILE NO:

REQUEST NO: 100398

<u>Results</u>

Date of cast: 12/07/2022

Water/Powder Ratio: 0.450

Age	Compressive Strength (MPa)	Date Tested
12 Hours	3.8	12/07/2022
1 Day	18.0	13/07/2022
3 Days	33.0	15/07/2022
7 Days	40.0	19/07/2022
28 Days	63.0	09/08/2022

Notes:

- Samples were provided by the client and tested as received.
- The mould used for determining the compressive strength contains three cubes of 75 x 75 x 75 mm in size.
- The specimens for 3, 7 and 28 days have been stored in curing water.
- Test results in this Test Report relate only to the samples tested.

Mark Lorkovic, Yasha Reis, Mat. File, File

Approved Signatory	Rfcli	Robert Camilleri	ibe upa	NATA
Date	Serial No.	CON1008398.RC.3	A CONTRACT	

Accredited for compliance with ISO/IEC 17025 – Testing

This report shall not be reproduced in full without the approval of the Boral MTS Laboratory. Test results in this Test Report relate only to the samples tested.

TEST CERTIFICATE

Final Prior Reports: CERT180533

Certificate Number: CERT180856

Issued: 01, June 2018

Page: 1 of 2

Associated Reports : None

Cement Australia 18 Station Avenue, Darra, Qld 4076 PO Box 802, Mt Ommaney Qld 4074 Ph: 07 3335 3000 Fax: 07 3335 3227

Client:

BASF Australia Ltd. 731 Curtin Avenue East, Eagle Farm QLD 4009.

Laboratory Sample ID: 18030997

The following test results were obtained by the Cement Australia Darra Laboratory for grout specimens produced at the Darra laboratory 18 Station Ave., Darra, per AS1012.8.3, AS 1478.2, AS1012.9, AS1012.18 and the manufacturers instruction.

Mix des	scription:		I	MasterRoc MG01
Mix ld: 180789	Compressive St	rength - Restra	ained	
180797	Shrinkage - Ur	restrained		
	Manufacturers			
Materials	Instructions	Batched	Water to powder ratio	2
MasterRoc MG01 Bag # DOM:02/2018 B/N	ŧ			
SLO448N19	20.000kg	4.500 kg	0.350	
Water	7.000 kg	1.575 kg	(Laboratory reticulated)	
Mix Date :	28/03/2018	Mix time :	6:39	
Temps. (℃) Room:	22.0	Grout :	23.4	
Making	nd auring toat a	naolmana i	nor AS 1479 0 and AS 1010 9	
			per AS 1478.2 and AS 1012.8	i.J
	: per 1012.8.3 -			
Initial curing	: Standard	Restraint:	Yes	
Time between me	oulding and star	dard curing :	24 hr	
	Curing Zone :	Tropical		

Compressive Strength per AS1012.9 - Restrained (Note 1)				Dimensional Change per AS1478.2									
Sp	Specimen Id : 180789						Specimen Id : 180797 Drying Shrinkage (µstrain)						
Age	Standard moist		Com	pressive Stre	ength - 50 mm	cubes	Initial curing (A): Standard	Exposure	Spec	imen Nun	nber		
Ű	curing		Cube 1	Cube 2	Cube 3	Average	Initial curing (B): Unrestrained	Days	1	2	3	Average	
Da	iys	TestDate		MPa		MPa	Demoulded : 29/03/2018	7	2592	2624	2592	2600	
7	6	04/04/18	69.8	64.6	72.0	68.8	Initial date : 29/03/2018	14	3064	3096	3048	3070	
14	13	11/04/18	38.7-R	76.5	76.5	76.5		21	3284	3304	3252	3280	
28	27	25/04/18	84.4	89.0	80.4	84.5		28	3428	3436	3388	3420	
								56	3644	3688	3616	3650	

Notes:

Note 1 - Cube 1 - 14 day Rejected from average (outside 10% from average)

Approved Signatory D Kelly Construction Materials Testing

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

NATA Accredited Laboratory Number 187

Result Analysis Report

tralia Pty Ltd	Measured b abdulnem Result Sour Measuremen Accessory N Hydro 20000 Absorption: 1 Dispersant I 1.330 Span : 2.401 Surface Wei 4.755	rce: nt S (A) RI: ighted Mea um d(0.5):	ın D[3,2]: 15.629 e Size Distri	W Ar Ge Si: 0.1 W 3.1 Ur 0.1 Vc 18 Um	nalysis mo eneral purp ze range: 020 t eighted Ro 764 o niformity: 743 ol. Weighte	o del: pose to 2000.00		AM Sensitivity Normal Obscuratio 12.23 % Result Em Off Result unit Volume 39.792	on: ulation
	Hydro 20000 Absorption: 1 Dispersant I 1.330 Span : 2.401 Surface Wei	G (A) RI: ighted Mea um d(0.5):	15.629	Ge Si 0.0 Wi 3.7 Ur 0.7 Vc 18 Um	eneral purp ze range: 020 t eighted Re 764 niformity: 743 ol. Weighte	oose to 2000.00 esidual: % ed Mean D[4,3]:	Normal Obscuratio 12.23 % Result Em Off Result unit Volume	on: ulation ts:
	2.401 Surface Wei	um d(0.5):	15.629	0.7 Vc 18 um	743 ol. Weighte		-	Volume	
		um d(0.5):	15.629	18 um			-	39.792	um
							d(0.9):	39.792	um
		Particle	e Size Distri						
0.1			10		100		1000 20	00	
0.1		Partic		n)	100		1000 20	00	
1, Wednesda	ay, 17 March								
0.105 0.120 0.120 0.138 0.158 0.182 0.209 0.240 0.240 0.2316 0.338 0.343 0.4479 0.4550 0.6550 0.6551 0.724	0.00 0.00 0.00 0.00 0.04 0.17 0.28 0.36 0.43 0.49 0.54 0.57 0.59 0.59 0.51	1.096 1.259 1.445 1.660 1.905 2.188 2.512 2.884 3.311 3.802 4.365 5.012 5.754 6.607 7.586	0.71 0.77 0.85 0.94 1.06 1.19 1.35 1.52 1.71 1.93 2.16 2.41 2.68 2.98	11.482 13,183 15,136 17,378 19,953 22,909 26,303 30,200 34,674 39,811 45,709 52,481 60,256 69,183 79,433	4.67 5.19 5.69 6.10 6.36 6.39 6.17 5.66 4.92 4.00 2.98 1.95 0.99 0.06 0.00	120,226 138,038 158,489 181,970 208,930 239,863 275,423 316,228 363,078 416,869 478,630 549,541 630,957 724,436 831,764	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1258.925 1445.440 1659.587 1905.461 2187.762 2511.886 2884.032 3311.311 3801.894 4365.158 5011.872 5754.399 6806.834 7585.776 8709.636	(olume in % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
	Size (µm) 0.105 0.120 0.138 0.158 0.162 0.200 0.240 0.275 0.316 0.383 0.417 0.479 0.550 0.631 0.724 0.832 0.955	Size (µm) Volume In % 0.105 0.00 0.120 0.00 0.138 0.00 0.156 0.00 0.157 0.00 0.182 0.00 0.209 0.00 0.209 0.04 0.216 0.17 0.225 0.17 0.236 0.36 0.363 0.36 0.363 0.36 0.363 0.36 0.363 0.36 0.363 0.54 0.550 0.57 0.631 0.59 0.724 0.59 0.724 0.61 0.832 0.63	Size (µm) Volume In % Size (µm) Size (µm) No 0 0.105 0.00 1.086 1.086 0.105 0.00 1.259 1.086 1.086 0.138 0.00 1.259 1.086 1.086 0.138 0.00 1.259 1.086 1.086 0.158 0.00 1.660 1.095 1.095 0.209 0.04 2.512 1.025 1.025 0.209 0.04 2.512 2.684 3.311 0.209 0.04 2.512 2.684 3.311 0.209 0.04 2.512 2.684 3.311 0.209 0.04 2.512 2.684 3.311 0.363 0.363 3.802 3.311 3.802 3.311 0.365 0.363 3.633 3.802 3.311 3.802 3.311 3.802 3.311 3.633 3.603 3.607 5.754 3.633 3.607 5.754 3.633	Size (µm) Volume in % 0 0.105 0.00 0.105 0.00 1.259 0.105 0.00 1.259 0.138 0.00 1.445 0.182 0.00 1.660 0.182 0.00 1.660 0.192 0.00 1.445 0.182 0.00 1.660 0.209 0.04 2.188 0.209 0.04 2.512 0.209 0.04 2.512 0.209 0.04 2.512 0.316 0.268 3.311 0.275 0.17 2.684 0.316 0.36 3.802 0.316 0.36 3.802 0.417 0.49 5.012 0.417 0.49 5.012 0.631 0.57 6.607 0.631 0.57 2.68 0.631 0.59 7.586 0.632 0.61 8.710 0.832 0.61	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Size (µm) Volume In % Size (µm) Volume In % 0.105 0.00 1.096 0.71 11.482 4.67 0.105 0.00 1.259 0.77 15.133 5.19 0.138 0.00 1.445 0.65 17.378 6.10 0.182 0.00 1.905 0.94 19.953 6.36 0.182 0.00 1.905 1.06 22.909 6.38 0.209 0.04 2.188 1.19 28.303 6.17 0.275 0.17 2.884 1.52 30.200 6.38 0.275 0.17 2.884 1.52 30.200 6.38 0.316 0.36 3.802 1.71 39.811 4.92 0.363 0.36 3.802 1.93 45.709 2.86 0.417 0.49 5.012 2.16 52.481 1.95 0.550 0.57 5.754 2.68 6.9183 0.06 0.724 0.59	Size (μm) Volume In % Size (μm) Size (μm) I1.462 4.67 138.038 0.138 0.00 1.445 0.655 17.376 5.69 181.970 188.499 0.182 0.00 1.905 1.066 22.909 6.36 229.9883 225.948 28.9303 6.39 275.423 0.209 0.04 2.188 1.19 22.909 6.36 239.883 275.423 0.275 0.17 2.884 1.52 30.200 6.17 316.228 33.11 1.77 39.811 4.00 476.630 0.365 0.36 3.802 1.93 45.709 2.98 549.541 65.95 </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Size (µm) Volume In % Size (µ</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Size (µm) Volume In % Size (µ

Operator notes:

Malvern, UK

LSN 251790

Malvern Instruments Ltd.

Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.61 Serial Number : MAL100825 File name: Silica 3 Record Number: 222 17/03/2021 8:02:28 AM Occupational Hygiene Assessments Occupational Health

Environmental Health

Mr. Muans Abdulnebe Laboratory Section Head - Chemistry Boral Material Technical Services Unit 4, 3-5 Gibbon Rd, BAULKHAM HILLS NSW 2153

Respirable Crystalline Silica Content of LSN251790: Master Builders Solutions MasterRoc MG01

Executive Summary

The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has been introduced by the Work Health and Safety (WHS) Regulations in Australia as a means of classifying workplace hazardous chemicals and communicating their hazards through labelling and safety data sheets.

Crystalline silica has been classified as carcinogenic to humans (lung) by the International Agency for Research on Cancer (IRAC Group 1 carcinogen; GHS Category 1A; Specific Target Organ Systemic Toxicity (Repeated Exposure): Category 1). Crystalline silica is only carcinogenic if it is respirable (Respirable Crystalline Silica known as RCS) and reaches the deepest part of the lungs. If the concentration of RCS is <0.1% w/w in a product then it does not have to be classified as carcinogenic and labelled as such under GHS. The Safety Data Sheet also does not have to state that the product is carcinogenic if the RCS is <0.1% w/w. The RCS concentration can be measured using the SWeRF (Size Weighted Respirable Fraction) Method to determine if the RCS is <0.1% w/w.

The SWeRF Method was used on sample LSN 251790 Master Builders Solutions (MasterRoc MG01) provided by Mr. Muans Abdulnebe.

The RCS was determined to be **<0.008%** and is about 10 times under the 0.1% RCS criteria concentration for being classified as a carcinogen.

1. Background

The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has been introduced by the Work Health and Safety (WHS) Regulations in Australia as a means of classifying workplace hazardous chemicals and communicating their hazards through labelling and safety data sheets.

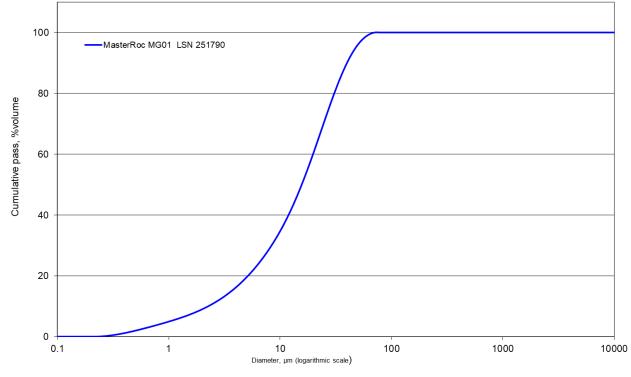
Crystalline silica has been classified as carcinogenic to humans (lung) by the International Agency for Research on Cancer (IRAC Group 1 carcinogen; GHS Category 1A; Specific Target Organ Systemic Toxicity (Repeated Exposure): Category 1). Crystalline silica is only carcinogenic if it is respirable (Respirable Crystalline Silica known as RCS) and reaches the deepest part of the lungs. If the concentration of RCS is <0.1% w/w in a product then it does not have to be classified as carcinogenic and labelled as such under GHS. The Safety Data Sheet also does not have to state that the product is carcinogenic if the RCS is <0.1% w/w.

The RCS concentration can be measured using the SWeRF (Size Weighted Respirable Fraction) Method to determine if the RCS is >0.1%w/w.

The SWeRF Method allows two techniques to be used:

- Calculation
- Sedimentation

The Calculation technique relies on determining the amount of respirable dust in a sample from measurement of the Particle Size Distribution and then using a bulk analysis for quartz to determine the % of crystalline silica in the sample or product.


The Sedimentation technique relies on the material to be tested to be mixed with a fluid and allowed to settle so coarse particles sink faster than fine particles. Using Stokes Law the settling time can be calculated and the respirable fraction is extracted and analysed. The Sedimentation technique is more robust than the Calculation technique because in mixtures of minerals there can be different destitution of minerals in the different size fractions. Laurie Glossop has seen this many times, especially in mining concentrates etc. It is our Opinion the Sedimentation technique should be used to provide more certainty about RCS in products. Often the concertation of the RCS is less than in the bulk material.

Boral provided a representative sample of LSN 251790 Master Builders Solutions MasterRoc MG01.

2. Analysis of LSN 251790 Master Builders Solutions MasterRoc MG01 Provided by Mr. Muans Abdulnebe.

Sample LSN251790 Master Builders Solutions MasterRoc MG01 was provided by Mr Muans Abdulnebe and was analysed by the SWeRF Sedimentation technique. Mr Muans Abdulnebe provided a bulk sample of product which was a fine powder.

A PSD had been performed by Boral on the sample and graph is shown below: <u>Cumulative pass results</u>

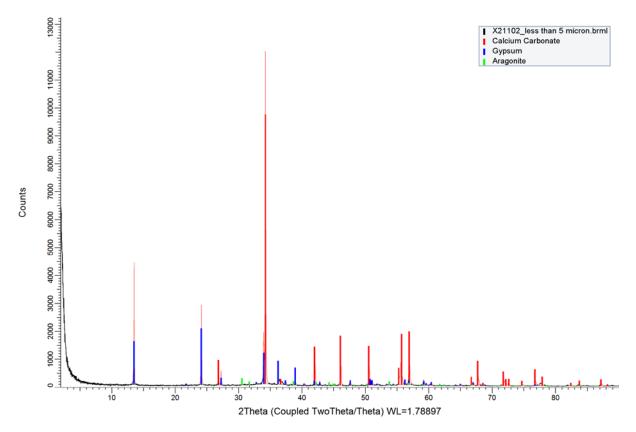
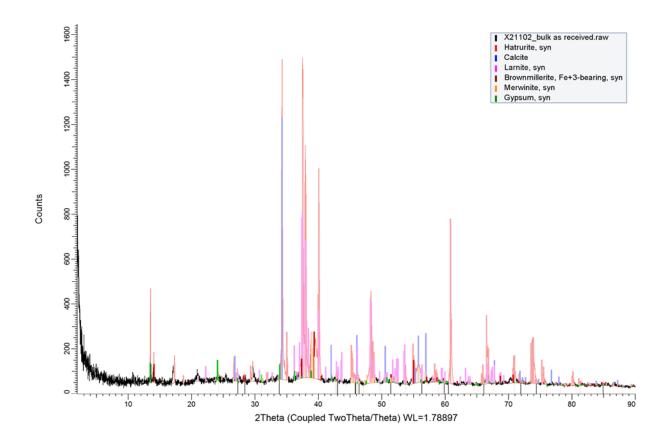

Essentially all of the sample is <75µm which is the size fraction sent to the X-Ray and Particles Laboratory, Institute for Future Environments at Queensland University of Technology. This sdample was elerutriated to produce a <5µm (respirable fraction)

Table of < 5 micron yield

X21102	1
Boral MasterRoc MG01	LSN251790
Sample Mass	9.825
Mass elutriated	0.145
Yield (< 5 micron, %)	1.476

1 Cumnock Place, Duncraig WA 6023 Telephone: (08) 9447 9911 Mobile: 0438 001 955 Email: <u>laurie.glossop@glossopconsultancy.com.au</u> As can be seen from the Table above 1.5% of the bulk material was in the respirable fraction.

The XRD of $<5\mu m$ is shown below:


Quantification of < 5µm extract

X21102	1
Boral MasterRoc MG01 LSN251790	< 5 micron
Aragonite	0.8
Calcite	34.1
Gypsum	11.3
Amorphous	53.8

The Quantitative XRD shows that the $< 5\mu$ m extract has a high concentration of amorphous material which is fairly typical of material that is very fine. There was no RCS detected (<0.5%).

It was decided to check the crystalline silica content in the bulk material. Some bulk material was then analysed by Quantitative XRD:

1 Cumnock Place, Duncraig WA 6023 Telephone: (08) 9447 9911 Mobile: 0438 001 955 Email: <u>laurie.glossop@glossopconsultancy.com.au</u>

The concentration of the minerals detected is shown below.

X21102	1
Boral MasterRoc MG01 LSN251790	As received
Brownmillerite	5.8
Calcite	6.4
Anhydrite	0.7
Gypsum	0.9
Hatrurite	46.0
Larnite	13.7
Merwinite	4.0
Amorphous	22.5

Once again no quartz was detected in the bulk (<0.5%). Many of the minerals present is what you would see in Portland Cement.

2.1 Calculation of RCS in the LSN251790 Master Builders Solutions MasterRoc MG01

As no RCS was detected in the XRDs of either the <5 μm or the bulk we can calculate the < concentration of RCS:

0.5 (Detection Limit%) x Weight Percentage <5 μ m from elutriation (1.5%)

RCS% = <0.5% x 0.015 (<5 µm fraction) = <0.008%

3. Conclusion

The RCS of the Boral LSN 251790 Master Builders Solutions MasterRoc MG01 was determined to be <0.008% and is at least 10 times under the 0.1% RCS criteria concentration. The product would not have to be classified as carcinogenic.

Yours sincerely

Laurie Glossop B.Sc Ph.D COH MAIOH FAIOH

4th May 2021

Parkes Laboratory K & H Geotechnical Services Pty Ltd ABN 115408476 2A East Street Parkes NSW 2870

Phone: (02) 6862 5554 Report No: CON:W21 /03653 Issue No: 1 **Concrete Test Report** Accredited for compliance with ISO/IEC 17025. -Testing Client: John Holland & CPB Contractors NATA TECHNICAL COMPETENCE Approved Signatory: Pam Beddie NATA Accredited Site No: 5606 (Concrete Laboratory Manager) Project: Rozelle Interchange 3B - Site A - WestConnex M4M5 Link Date of Issue: 1/04/2021 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

COMPRESSIVE STRENGTH OF GROUT CUBES

Detail	ls of San	npled G	Grout		Grou	t Sp	ecim	nens	anc	l R	esult	S			
Batched Truck No				Grout (°C) Compact p(mm) Measured			nsions m) Width 2	Density (kg/m3)		Std			Comp. Strength (MPa)		Location & Remarks
31/03/21	11:00	N/A		N/A	WRAG 267A	74.8	74.7	N/A	N/A	0	31/03/21	6h	3.3	Ν	200 Mil Accelerant
N/A		N/A		N/A	WRAG 267B	74.7	74.9	N/A		0	31/03/21	7h	5.8	Ν	
N/A	N/A	GROUT	N/A	N/A	WRAG 2670	; 74.8	74.8	N/A		0	31/03/21	8h	8.5	Ν	
					WRAG 267D	74.6	74.9	N/A		0	31/03/21	9h	12.5	Ν	
					WRAG 267E	74.8	74.7	N/A		0	31/03/21	10h	16.0	N	
					WRAG 267F	74.9	74.8	N/A		0	31/03/21	11h	21.0	Ν	

Notes	Remarks
 Sampling in accordance with AS 1012.8.3 Clause 5.2 Compaction in accordance with AS 1012.8.3 Clause 7.2(e)(i), unless otherwise stated Initial curing in accordance with AS 1012.8.3 Clause 9.3.2 Standard curing in accordance with AS 1012.8.3 Clause 9.4(a) Compressive strength in accordance with AS 1012.9 Density in accordance with AS 1012.12.1 Sampling was not performed by this laboratory. Data reported on initial curing, consistency and age at test is not covered by this laboratory, therefore notes 1-3 may not apply. 	FailureMode: N = Normal Samples submitted by client and tested as received.
Form No: 18969, Report No: CON:W21 /03653 © 2000-2021 QESTLa	b by SpectraQEST.com Page 1 of 1

Parkes Laboratory K & H Geotechnical Services Pty Ltd ABN 115408476 2A East Street Parkes NSW 2870

Concrete Test Report

Client:

John Holland & CPB Contractors

Project:

Rozelle Interchange 3B - Site A - WestConnex M4M5 Link

Approved Signatory: Pam Beddie (Concrete Laboratory Manager) Date of Issue: 1/04/2021 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

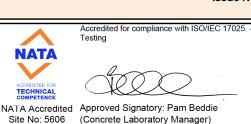
Report No: CON:W21 /03654

Issue No: 1

COMPRESSIVE STRENGTH OF GROUT CUBES

Detail	s of San		Grou	Grout Specimens and Results											
Batched Truck No	e Time Sampled Time Moulded Prog. Load	Plant Name Docket No Mix Code		Grout (°C) Compact p(mm) Measured			m)	Density (kg/m3)		Std			Comp. Strength (MPa)	Marks Fail Mode	Location & Remarks
31/03/21	11:00	N/A		N/A	WRAG 268A	74.5	74.7	N/A	N/A	0	31/03/21	6h	5.6	Ν	400 Mil Accelerant
N/A		N/A		N/A	WRAG 268B	74.7	74.8	N/A		0	31/03/21	7h	8.3	N	
N/A	N/A	GROUT	N/A	N/A	WRAG 2680	; 74.6	74.8	N/A		0	31/03/21	8h	12.5	N	
					WRAG 268D	74.8	74.7	N/A		0	31/03/21	9h	21.0	N	
					WRAG 268E	74.5	74.8	N/A		0	31/03/21	9h	22.0	N	
					WRAG 268F	74.6	74.9	N/A		0	31/03/21	9h	22.0	Ν	

Notes	Remarks
 Sampling in accordance with AS 1012.8.3 Clause 5.2 Compaction in accordance with AS 1012.8.3 Clause 7.2(e)(i), unless otherwise stated Initial curing in accordance with AS 1012.8.3 Clause 9.3.2 Standard curing in accordance with AS 1012.8.3 Clause 9.4(a) Compressive strength in accordance with AS 1012.9 Density in accordance with AS 1012.1.2 Sampling was not performed by this laboratory. Data reported on initial curing, consistency and age at test is not covered by this laboratory, therefore notes 1-3 may not apply. 	FailureMode: N = Normal Samples submitted by client and tested as received.
Form No: 18969, Report No: CON:W21 /03654 © 2000-2021 QESTLa	b by SpectraQEST.com Page 1 of 1


Parkes Laboratory K & H Geotechnical Services Pty Ltd ABN 115408476 2A East Street Parkes NSW 2870

Concrete Test Report

Client:

Project:

John Holland & CPB Contractors

Approved Signatory: Pam Beddie (Concrete Laboratory Manager) Date of Issue: 1/04/2021 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Report No: CON:W21 /03667

Issue No: 1

COMPRESSIVE STRENGTH OF GROUT CUBES

Rozelle Interchange 3B - Site A - WestConnex M4M5 Link

Detail	ls of San	Grou	Grout Specimens and Results												
Batched Truck No		Plant Name Docket No Mix Code		Grout (°C) Compact p(mm) Measured		(m	nsions m) Width 2	Density (kg/m3)		Std			Comp. Strength (MPa)		Location & Remarks
31/03/21	11:00	N/A		N/A	WRAG 269A	74.8	74.8	N/A	N/A	0	31/03/21	6h	7.1	Ν	800 Mil Accelerant
N/A		N/A		N/A	WRAG 269E	74.6	74.9	N/A		0	31/03/21	7h	12.5	Ν	
N/A	N/A	GROUT	N/A	N/A	WRAG 2690	; 74.7	74.7	N/A		0	31/03/21	8h	24.5	Ν	
					WRAG 269D	74.9	74.8	N/A		0	31/03/21	8h	21.5	Ν	
					WRAG 269E	74.6	74.7	N/A		0	31/03/21	8h	23.0	Ν	
					WRAG 269F	74.9	74.9	N/A		0	31/03/21	8h	22.0	Ν	

Notes	Remarks
 Sampling in accordance with AS 1012.8.3 Clause 5.2 Compaction in accordance with AS 1012.8.3 Clause 7.2(e)(i), unless otherwise stated Initial curing in accordance with AS 1012.8.3 Clause 9.3.2 Standard curing in accordance with AS 1012.8.3 Clause 9.4(a) Compressive strength in accordance with AS 1012.9 Density in accordance with AS 1012.12.1 Sampling was not performed by this laboratory. Data reported on initial curing, consistency and age at test is not covered by this laboratory, therefore notes 1-3 may not apply. 	FailureMode: N = Normal Samples submitted by client and tested as received.
Form No: 18969, Report No: CON:W21 /03667 © 2000-2021 QESTLa	b by SpectraQEST.com Page 1 of 1

Coffey Testing Pty Ltd ABN 92 114 364 046 31 Hope Street Melrose Park NSW 2114 Phone: +61 (2) 8876 0500

Grout Trial Mi	x Test	Repo	ort							Repo	rt No: GT	MXSYD	C22C-3938 Issue No: 1
Client:	MB Solutio	ns Austra	alia Pty I	Ltd					•		for compliance signatory to the		
	11 Stanton							NA	ТА	Arrangeme		l recognition	of the equivalence
	Seven Hills	SNSW 2	147								testing scheme		
Principal:								mpin	1940		\wedge	$\overline{}$	`
Project No.:	TESTSYD	C01576A	А					itac		C	$M \geq$	in	la
Project Name:	Trial Mix							Hac	MILSA				
Project Location:								"halalal	Mululu	Geotechni		a Pajula	
Lot No.:				TRN:						NATA Site Date of Iss	Number: 431 ue:	29/08/20	22
Trial Mix Details								7					
Mix Identification:		_	Roc MG (
Room Temperature (°C) Room Humidity (%)			1.5 50	Water (oportions:		00	Additive	1 (σ)				
Grout Temperature (°C)			2.0	Cement	0,		00		1 descrip	otion			
Date Tested		18/0	8/2022	W/C Ra			.00						
Expansion and Blee	eding of F	reshly I	Mixed (Grout				-					
Test Area Initial Temperature	e (°C)	2	1.6	Grout T	emperatur	e at Start ((°C)		22.0				
Test Area Final Temperature	(°C)	2	1.6	Date Te	sted				18/08/202	22			
Time elapsed (minutes)		15	30	45	60	90	120	150	180	240	Final ble	ed (%)	
Expansion (%)		0.40	0.40	0.20	0.20	0.20					0.2	0	
Bleed (%) Combined expansion and b	leed (%)	0.00	0.00	0.20	0.20	0.20					0.2	0	
B114.2 Criteria: Early expan	()					0.10							1
Flow of Grout													
Efflux (secs) - Standard 1.72	5L	13.0	Ambien	t Tempera	ature (°C)	21	.6	Mix Pre	paration		Date	e Tested	18/08/2022
Efflux (secs) - Time Delayed	45mins	15.0	Mix Ter	nperature	(°C)	22	2.0	Complet	tion of mi	xing (min	s)	1	
B114.2 Criteria: After mixin;	$\sigma = < 20$ second	nds After 4	5 minutes	=+3 sec	onds								
Changes in Height	<u> </u>		[ested)		onus								
Mix Temp (°C)	1			linder 1									
Test Age	1 Day	31	Days	14	Days	28 I	Days						
Test Date													
Change in Height (%) Temperature (°C)								-					
Relative Humidity (%)								-					
Compressive Stren	gth of Gro	out Cub	es	(Not	Tested)	1							
Grout Temperature (°C)					Consisten								
Specimen ID	Date Sa	mpled	Date	Tested		Dimensio th 1) dth 2		nsity /m ³)	Age (Days)	Compi	ressive Strength (Mpa)
					, vv iu			util 2	(Kg	/ m)	(Days)	_	(inpa)
												_	
												-	
												_	
Notes 1. Sampling in accordance with AS 10 2. Compaction in accordance with AS 3. Initial curing in accordance with AS 4. Standard curing in accordance with AS 6. Density in accordance with AS 101	1012.8.3 Clause 7. 1012.8.3 Clause 9 AS 1012.8.3 Clause with AS 1012.9	.3.1	otherwise sta	ated					DOM: Ma		N: SL1502 04 performance		/ice.
 Density in accordance with ris rot in acc #Mechanical mixing of grout in acc Flow of grout (Flow cone method) Expansion and bleeding of freshly n 	ordance with ASTN in accordance with	ASTM C939	STM C940										

Form Number: R046AC Issued: 01/07/2022

l

Coffey Testing Pty Ltd ABN 92 114 364 046 31 Hope Street Melrose Park NSW 2114 Phone: +61 (2) 8876 0500

Grout Trial Mi	x Test	Repo	ort							Repo	rt No: GTN	MXSYDO	C22C-3936 Issue No: 1
Client:	MB Solution	ns Austra	alia Pty I	Ltd					•		for compliance wi		
	11 Stanton							NA	ТА	Arrangeme	nt for the mutual r nedical testing, ca	ecognition of	the equivalence
	Seven Hills	NSW 21	47								testing scheme p		
Principal:								man	19/10		1	$\overline{}$.	`
	TESTSYDC	01576A	A					ilac		C	Ma	jui	'a
	Trial Mix							ilde		Approved	Signatory: Maaria	Paiula	
Project Location:								"uhuhul	Mulut	Geotechnic	ian	Fajula	
Lot No.:				TRN:						NATA Site Date of Iss	Number: 431 Je:	29/08/2022	2
Trial Mix Details													
Mix Identification:		MasterF	Roc MG (01				7					
Room Temperature (°C)			1.5		oportions:								
Room Humidity (%)			50	Water (75	Additive					
Grout Temperature (°C) Date Tested			2.2 8/2022	Cement W/C Ra	(0)	35 45	00	Additive	1 descrip	otion			
Expansion and Blee	ding of Er				110 (76)	43	.00						
	-					4 <u>S</u> 444	(PC)		22.0				
Test Area Initial Temperature Test Area Final Temperature			1.5 1.5	Date Te	emperatur sted	e at Start (°C)		22.0 18/08/202	2			
Time elapsed (minutes)	(0)	15	30	45	60	90	120	150	180	240	Final blee	d (%)	
Expansion (%)		0.60	0.60	0.60	0.40	0.40							
Bleed (%)		0.00	0.20	0.20	0.20	0.20					0.20)	
Combined expansion and b	()	0.63	0.60	0.60	0.60	0.60							
B114.2 Criteria: Early expan	asion = < 2% a	t 3 hours,	Final blee	ed = <0.5	%								
Efflux (secs) - Standard 1.72	51	9.0	Ambian	t Tompore	ature (°C)	21	.5	Mix Pre	paration		Data	Tested	18/08/2022
Efflux (secs) - Time Delayed		10.0	_	nperature			.0		•	xing (mins		0	16/06/2022
				r	(-)			1		0	,		
B114.2 Criteria: After mixing	g = < 20 second	ds, After 4.	5 minutes	$=\pm3$ sec	onds								
Changes in Height	of Grout	(Not T	'ested)										
Mix Temp (°C)				linder 1				_					
Test Age	1 Day	3 I	Days	14	Days	28 I	Days	-					
Test Date Change in Height (%)								-					
Temperature (°C)								-					
Relative Humidity (%)													
Compressive Streng Grout Temperature (°C)	gth of Gro	ut Cube	es	(NOT	Tested) Consisten	CN							
						oy Dimensio	ns (mm)	Der	sity	Age	Compre	ssive Strength
Specimen ID	Date San	npled	Date	Tested		th 1		dth 2	(kg	/m ³)	(Days)	-	(Mpa)
Notes 1. Sampling in accordance with AS 10	12.8.3 (Janea 5.2							Rema		NA. M	0000 D/AL GL 1	502.04	
 Samping in accordance with AS 10 Compaction in accordance with AS Initial curing in accordance with AS 	1012.8.3 Clause 7.2		otherwise sta	ated							2022 B/N: SL1 performance o		ce.
4. Standard curing in accordance with	AS 1012.8.3 Clause											/ /	
 Compressive strength in accordance Density in accordance with AS 1012 Machanical mining of must in constant 	2.12.1	C207											
7. #Mechanical mixing of grout in accord 8. Flow of grout (Flow cone method) in	n accordance with A	STM C939											
9. Expansion and bleeding of freshly m	nixed grout in accord	ance with AS	51M C940										

Form Number: R046AC Issued: 01/07/2022

Coffey Testing Pty Ltd ABN 92 114 364 046 31 Hope Street Melrose Park NSW 2114 Phone: +61 (2) 8876 0500

Grout Trial Mi	x Test	Repo	ort							Repo	rt No: GTM	MXSYDO	22C-3937 Issue No: 1
Client:	MB Solution	ns Austra	alia Pty I	Ltd					•		for compliance wi signatory to the IL		
	11 Stanton							NA	ТЛ	Arrangeme	nt for the mutual r nedical testing, ca	ecognition of	the equivalence
	Seven Hills	NSW 2	147								testing scheme p		
Principal:								Interior	1990		1	$\overline{)}$	
Project No.:	TESTSYDO	C01576A	A					ilac	MADA	C	Ma	jul	a
Project Name:	Trial Mix							Hac	AVIII A	A	•		
Project Location:								"Julidia	Mululi	Geotechnic	Signatory: Maaria cian	Pajula	
Lot No.:				TRN:						NATA Site Date of Iss	Number: 431 ue:	29/08/2022	
Trial Mix Details													
Mix Identification:		MasterI	Roc MG (01									
Room Temperature (°C)			1.5		oportions								
Room Humidity (%)			50	Water (<i>o,</i>		87	Additive		4			
Grout Temperature (°C) Date Tested		_	1.9 8/2022	Cement W/C Ra		42	00 50	Additive	e 1 descrip	non			
Expansion and Blee	ding of F				110 (70)	42	.50						
Test Area Initial Temperature	-		1.5		emperatur	e at Start ((°C)	1	22.0				
Test Area Final Temperature	· /		1.5	Date Te		e at Start (()		18/08/202	2			
Time elapsed (minutes)	()	15	30	45	60	90	120	150	180	240	Final blee	d (%)	
Expansion (%)		0.00	0.00	0.00	-0.20	-0.20							
Bleed (%)		0.00	0.00	0.00	0.20	0.20					0.20		
Combined expansion and b	. ,	0.00	0.00	0.00	0.00	0.00							
B114.2 Criteria: Early expar Flow of Grout	sion = < 2% d	it 3 hours,	Final ble	ed = <0.5	9%								
Efflux (secs) - Standard 1.72	51	11.0	Ambian	t Tompore	ature (°C)	21	5	Mix Dro	paration		Data '	Tested	
Efflux (secs) - Time Delayed		12.0	_	nperature			9	_	tion of mi	xing (min		1	
B114.2 Criteria: After mixing Changes in Height	5		ested))	onds								
Mix Temp (°C) Test Age	1.D	21	2	linder 1	Darra	20 1		-					
Test Date	1 Day	51	Days	14	Days	201	Days	-					
Change in Height (%)								-					
Temperature (°C)													
Relative Humidity (%)													
Compressive Streng	gth of Gro	ut Cube	es	(Not	Tested)								
Grout Temperature (°C)			_		Consisten	-							
Specimen ID	Date Sar	npled	Date	Tested		Dimensio		·		isity	Age		ssive Strength
					vv Id	lth 1	WI	dth 2	(kg	m ⁻)	(Days)		Mpa)
Notes 1. Sampling in accordance with AS 10 2. Compaction in accordance with AS 3. Initial curing in accordance with AS 4. Standard curing in accordance with 5. Compressive strength in accordance 6. Density in accordance with AS 1012 7. #Mechanical mixing of grout in accordance 8. Flow of grout (Flow cone method) i 9. Expansion and bleeding of freshly n	1012.8.3 Clause 7. 1012.8.3 Clause 9. AS 1012.8.3 Clause with AS 1012.9 2.12.1 ordance with ASTM in accordance with A	3.1 e 9.4(a) 1 C305 ASTM C939		ated					DOM: Ma		N: SL1502 04 performance o	f this servic	e.

Form Number: R046AC Issued: 01/07/2022

l

COFFE TESTING	y 🔶					Coffey Testing Pty Ltd ABN 92 114 364 046 31 Hope Street Melrose Park NSW 2114 Phone: +61 (2) 8876 0500				
						Report No: CON:SYDC22W02174 Issue No: 1				
Concret	e Test Repor	τ								
Client: Project No.: Project Name:	MB Solutions Australia F 11 Stanton Road Seven Hills NSW 2147 TESTSYDC01576AA Trial Mix					NATA	Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.			
Project Location	n:	TRN:				Iac-MRA	Approved Signatory: Ben Kirk (Geotechnician)			
Supplier:						The alabahahaha	NATA Accredited Laboratory Number:431 Date of Issue: 6/10/2022			
COMPRESS	VE STRENGTH OF	CONCRE	ETE C	<u>YLINI</u>	DERS)				
Details of Sa	mpled Concrete	Concret	e Spe	cime	ns an	d Results				
	d Plant Code Grade(MPa) Air(%)		-	Density	Curing		ge Strength Marks Fail Location & Remarks			

Date & Time Time Gampled			opecimen	Dimensions	Density Ournig	riep	Date of		Marks I an Location & Remarks	
Batched Time Moulded	Docket No	Agg(mm) Compact	ldent.	(mm)	(kg/m ³) Initial Std	d or	Test	(days) (MPa)	Mode	
Total Ma								(**)		
Truck No	Mix Code	Slump(mm)		Avg.	(hrs) (day					
Load / Prog. Load		Design Measured		Diameter Height		Туре				
Luau / Flog. Luau		Design Measureu		Diameter Height		ijpe				

Slump Only

Slump Only

Slump Only

COMPRESSIVE STRENGTH OF GROUT CUBES

Details of San	npled Gr	out		Grout Specimens and Results									
Date & Time Time Sampled Batched Time Moulded Truck No Load / Prog. Load	Docket No Mix Code		Grout (°C) Compact p(mm) Measured		Dimen (m Width 1	m)	Density (kg/m3)	Curing Initial Std (hrs) (days)	Date of Test		Comp. Strength (MPa)	Marks Fail Mode	Location & Remarks
22/08/22			22	4001A	74.2	75.0	1860		23/08/22	1	41.5	Ν	
				4001B	74.4	75.2	1860		23/08/22	1	39.5	Ν	
				4001C	74.2	74.0	1960		25/08/22	3	55.5	Ν	
				4001D	74.6	74.5	1940		25/08/22	3	54.0	Ν	
				4001E	74.2	75.0	1880		29/08/22	7	59.5	Ν	
				4001F	74.0	75.2	1880		29/08/22	7	60.5	Ν	
				4001G	73.2	75.4	1920		19/09/22	28	65.0	Ν	
				4001H	73.3	75.2	1940		19/09/22	28	64.5	Ν	

Notes	Remarks
 Sampling in accordance with AS 1012.1 Grout sampling in accordance with AS 1012.8.3 Clause 5.2 Compaction in accordance with AS 1012.8.3 Clause 7.2(e)(i), unless otherwise stated Initial curing in accordance with AS 1012.8.3 Clause 9.3.2 Standard curing in accordance with AS 1012.8.3 Clause 9.4(a) Compressive strength in accordance with AS 1012.9 Density in accordance with AS 1012.12.1 	FailureMode: N = Normal
Form No: 18969, Report No: CON:SYDC22W02174 © 2000-2022 QES	TLab by SpectraQEST.com Page 1 of 1

Contact Us

We welcome your comments and feedback

Please direct any correspondence to: Email: www.master-builders-solutions.com/en-au/contact Visit us at: www.master-builders-solutions.com/en-au

CONTACT US:

Australia MB Solutions Australia Pty Ltd Freecall: 1300 227 300 Sales Orders: ordersau@mbcc-group.com

New Zealand MB Solutions New Zealand Ltd Freecall: 0800 334 877

FOR COUNTRIES NOT LISTED, PLEASE CONTACT OUR REGIONAL OFFICE:

Telephone: +65 6232 4888 www.master-builders-solutions.com/en-asiapacific

The data contained in this publication are based on our current knowledge and experience. They do not constitute the agreed contractual quality of the product and, in view of the many factors that may affect processing and application of our products, do not relieve processors from carrying out their own investigations and tests. The agreed contractual quality of the product at the time of transfer of risk is based solely on the data in the specification data sheet. Any descriptions, drawings, photographs, data, proportions, weights, etc. given in this publication may change without prior information. It is the responsibility of the recipient of our product to ensure that any proprietary rights and existing laws and legislation are observed (02/2014).

® Registered trademark of a MBCC Group member in many countries of the world.